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Transition from damage to fragmentation in collision of solids
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We investigate fracture and fragmentation of solids due to impact at low energies using a two-dimensional
dynamical model of granular solids. Simulating collisions of two solid disks, we show that, depending on the
initial energy, the outcome of a collision process can be classified into two states: a damaged state and a
fragmented state, with a sharp transition in between. We give numerical evidence that the transition point
between the two states behaves as a critical point, and we discuss the possible mechanism of the transition.
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I. INTRODUCTION

Fragmentation, i.e., the breaking of particulate mater
into smaller pieces, is a ubiquitous process that under
many natural phenomena and industrial processes.
length scales involved in it range from the collisional evo
tion of asteroids through the scale of geological phenom
down to the breakup of heavy nuclei@1,2#. In most of the
realizations of fragmentation processes the energy is
parted to the system by impact; i.e., typical experimen
situations are shooting a projectile into a solid block, free
impact with a massive plate, and collision of particles of t
same size@3–11#. The most striking observation about fra
mentation is that the size distribution of fragments show
power law behavior independent of the microscopic inter
tions and the relevant length scales; e.g., the charge dist
tion of small nuclei resulted from collisions of heavy ion
exhibits the same power law behavior as the size distribu
of asteroids@1–11#. Experiments revealed that the power la
behavior of fragment sizes is valid for a broad interval of t
imparted energy@3–11#, which was also reproduced by com
puter simulation of sophisticated microscopic models@12–
17#. The observation of power law size distributions witho
a control parameter initiated the idea of self-organized c
cality @8–11,18,19# in fragmentation, and gave rise to nume
ous studies to understand the dynamic origin of the po
law @12–25#. Hence during the past years much informati
has been accumulated about fragmentation processes i
imparted energy range where a power law size distribu
occurs, but the limiting case of low energies is still not e
plored.

In addition to the general interest in fragmentation p
cesses, one can also mention other fields where fracture
fragmentation of solid particles due to impact play an imp
tant role. It is well known that in the flow of granular mat
rials a large part of the kinetic energy of the grains is dis
pated in the vicinity of their contact zone during th
collisions. In addition to the viscous and plastic effects, d
sipation by damaging is also an important source of ene
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loss in the flow. Collision of particles also occurs in the so
system in planetary rings. In this case the energy dissipa
due to impact damage might also influence the large s
structure formation in the rings@26#. On a larger length scale
in the solar system, the so-called collisional evolution of
teroids due to subsequent collisions, and the formation
rubble piles in the asteroid belt, are still challenging pro
lems @6#. Among industrial applications the breakup of a
glomerates in chemical processes can be mentioned. Du
experimental difficulties, the computer simulation of micr
scopic models is an indispensable tool in the study of th
impact phenomena@12–17#.

In the present paper we want to elaborate upon the imp
fracture and fragmentation of solids at low imparted ene
using a two-dimensional dynamical model of breaka
granular solids. Simulating collisions of two solid disks, w
show that, depending on the imparted energy, the outcom
a collision process can be classified into two states: a d
aged state and a fragmented state, with a sharp transitio
between. Analyzing the energetics of the impact and the
sulting fragment size distributions, we give numerical e
dence that the transition point between the damaged
fragmented states behaves as a critical point. The trans
proved to be the lower bound for the occurrence of pow
law size distributions. The possible mechanism of the tran
tion between the two states is discussed. In spite of the
cific features of the system studied here, most of our res
can be considered generally valid for impact phenom
mentioned above.

After giving a short summary of the main ingredients
our model in Sec. II, the numerical results concerning to
energetics of the collision process and to the size distribu
of fragments will be presented in Secs. III and IV, respe
tively. In Sec. V, we discuss the possible mechanism of
transition and some general consequences of our work
other types of fragmentation phenomena.

II. MODEL

Recently, we have worked out a two-dimensional dynam
cal model of deformable, breakable, granular solids, wh
enables us to perform a molecular dynamics simulation
2623 ©1999 The American Physical Society
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2624 PRE 59FERENC KUN AND HANS J. HERRMANN
fracture and fragmentation of solids in various experimen
situations@12,13#. Our model is an extension of those mode
which are used to study the behavior of granular materi
applying randomly shaped convex polygons to descr
grains@27#. To capture the elastic behavior of solids we co
nect the unbreakable, undeformable, polygons~grains! by
elastic beams. The beams, modeling cohesive forces betw
grains, can be broken according to a physical breaking r
which takes into account the stretching and bending of
connections. The breaking rule contains two parameterte
and tQ controlling the relative importance of the stretchin
and bending breaking modes, respectively. The energy st
in a beam just before breaking is released in the break
giving rise to energy dissipation. The average value of
energy dissipated by the breakup of one contact defines
crack surface energyEs in the model solid as a function o
the breaking parameterste and tQ . At the broken beams
along the surface of the polygons, cracks are generated in
the solid, and as a result of the successive beam breakin
solid falls apart. The fragments are defined as sets of p
gons connected by remaining intact beams. In the framew
of this discrete model one can introduce the notion of
binding energyEb as the energy released in the case of co
plete disintegration, i.e., in the case when all the fragme
are single polygons. Hence,

Eb5NcEs , ~1!

whereNc denotes the total number of grain-grain contacts
the solid. Note thatEb is proportional to the volume of the
sample, and can be considered as a natural energy sca
the system.

The time evolution of the fragmenting solid is obtained
solving the equations of motion of the individual polygo
until the entire system relaxes, i.e., there is no breaking
the beams during some hundreds of consecutive time s
and there is no energy stored in deformation. For more
tails of the model’s definition, see Refs.@12,13#.

We have applied the model to study shock fragmenta
of solids in various experimental situations. That is, simu
tions were performed to study the fragmentation of a so
disk caused by an explosion in the middle@12#, the breaking
of a rectangular block due to the impact with a project
@12#, and the collision of two macroscopic bodies~disks!
@13#. The model proved to be successful in reproducing
experimentally observed subtleties of fragmenting syste
e.g., the power law mass distribution of fragments was fou
to be independent of the initial conditions, with an expon
in the vicinity of two, slightly depending on the initial energ
@12,13#.

III. DAMAGE AND FRAGMENTATION

In the present paper we apply our model to explore
properties of impact fragmentation processes at low impa
energy. For this purpose we carried out molecular dynam
simulation of the collision of two solid disks of the sam
size, similar to Ref.@13#. The disk-shaped granular solid wa
obtained starting from the Voronoi tessellation of a squ
@28,29#, and cutting out a circular window in the middle
This way of construction gives rise to a certain surfa
roughness of the particles. The schematic representatio
l
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the collision of two particles is depicted in Fig. 1. For sim
plicity, in the present studies only central collisions we
considered; i.e., the value of the impact parameterb was set
to zero in all the simulations, and only the size of the p
ticles R and the surface energyEs were varied. In the simu-
lations the energy release by beam breaking is the only p
sible source of dissipation. The energy of the collisionE0 is
defined as the total initial kinetic energy of the collidin
bodies,

E05R2prv0
2 , ~2!

wherer is the mass density andv0 denotes the initial veloc-
ity of the particles. WhenE0 is smaller than the so-calle
damage thresholdEd , the collision results simply in elastic
rebound without internal damage~without breaking of
beams!. To achieve damaging,E0 has to surpass the damag
thresholdEd , which is determined by the surface energyEs
of the model.

It is generally accepted that impact fragmentation p
nomena exhibit so-called energy scaling, i.e., the result of
fragmentation process only depends on the value of the
cific energy defined as the imparted energy divided by
total mass of the system. To characterize the collision eve
we introduce a dimensionless parameterh with the definition

h5AE0

Eb
;

v0

AEs

. ~3!

This choice of parameterh has the advantage with respect
the specific energy that, besides the dependence on the
bal size, it also includes the specific material type throu
the surface energyEs . Since in the present study we focu
on the evolution of damage with increasing impact ener
simulations were performed at fixed values ofR andEs vary-
ing h in the rangeh0,h,1.5. Hereh0 corresponds to the
damage thresholdh05AEd /Eb. Our results concerning im
pact fragmentation ath.1.5 can be found in Ref.@13#, in-
cluding a detailed analysis of the dynamics of the collisi
process and a comparison to experiments. The values o
most important parameters of the present simulations
summarized in Table I.

In Fig. 2 we present the final breaking scenarios~relaxed
states! of the collision process obtained by simulations
four different values ofh. It can be observed that forh
;h0 @Fig. 2~a!#, cracking by beam breaking occurs main

FIG. 1. The schematic representation of the collision of t
disks. In all the simulationsRA5RB was used, and the value ofb
was set to 0.
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PRE 59 2625TRANSITION FROM DAMAGE TO FRAGMENTATION IN . . .
in the vicinity of the contact surface of the two bodies, a
the bulk remains practically intact. Since this gentle collisi
does not cause size reduction of the two particles, this c
can be considered as an inelastic impact of disks, where
ergy dissipation is solely due to internal damage. Increas
the impact energyE0 , i.e., increasingh, gives rise to more
broken beams in Fig. 2~b!, and the solids break into piece
Around the impact site of the bodies the fragments
smaller ~single polygons, and some pairs and triplets!, and
there are a few much larger fragments the size of which
still comparable to the original size of the bodies. Furth
increase ofh @Figs. 2~c! and 2~d!# mainly results in a
breakup of the large fragments into smaller ones, giving
to fragmentation of the entire solids. Based on the ab
qualitative picture, we classify the outcome of a collisi
into two states, i.e.,damagedand fragmentedstates, distin-
guished by the size of the largest remaining piece. The
liding bodies are considered to bedamagedwhen the size of
the largest piece is comparable to the original size of
bodies@see Figs. 2~a! and 2~b!#, while thefragmentedstate is
characterized by the absence of such large pieces@Figs. 2~c!
and 2~d!#. In the following we point out that the above qua
tative picture is also supported by a quantitative analysis
the energetics of the collision process and of the behavio
the resulting size distribution of fragments. That is, evalu
ing the energy released by the breaking of beams, and q
tities related to the size distribution of fragments, we w
justify that the behavior of the colliding system has two d
ferent regimes with a sharp transition in between.

The energetics of the collision process corresponding
the samples of Fig. 2 is summarized in Figs. 3 and 4. Fig
3 shows the energyER released by beam breaking, togeth
with the remaining kinetic energyE02ER stored in the mo-
tion of fragments as a function ofh. For the purpose of
comparison, the surface energyEs of the model, the binding
energy of the sampleEb , and the energy of the impactE0
are also plotted in the figure. When the impact energyE0
surpasses the damage thresholdEd (h surpassesh0), the
released energyER takes its smallest value, which is equal
the surface energyEs of the model~only one beam is bro-
ken!. The largest possible value ofER is equal to the binding
energy of the sampleEb , which can only be reached in th
case of complete disintegration. According to the simu
tions, this limiting case is hard to achieve, since on the s
face of the colliding disks opposite to the impact site, sm
fragments comprising a few polygons can always escap
can also be seen in the figure that the impact energyE0
producing complete disintegration has to be much larger t

TABLE I. The parameter values used in the simulations.

Parameter Symbol Unit Value

Failure elongation of a beam te % 3
Failure bending of a beam tQ degree 4
Surface energy Es erg 1.43106

Damage threshold Ed erg 1.73108

h0 1 0.08
Range of velocities vo cm/s 200–3500
se
n-
g

e

is
r

e
e

l-

e

f
of
t-
n-

l

to
re
r

-
r-
ll
It

n

FIG. 2. The final breaking scenarios of collisions of disks
different impact energiesE0 . The radius of the disks isR
520 cm, while the average size of a randomly shaped polygon
cm. The lines connecting the center of mass of the neighbo
polygons symbolize beams. The missing beams have already
broken. The values of the parameterh are 0.09, 0.2, 0.3, and 0.5 fo
~a!, ~b!, ~c!, and~d!, respectively.
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2626 PRE 59FERENC KUN AND HANS J. HERRMANN
the binding energyEb . Note that a similar qualitative behav
ior was found, simulating the free fall impact of a disk wi
a massive plate@16#.

The most interesting observation of Fig. 3 is that t
curve ofER versush is composed of two distinct parts; i.e
a rapidly increasing low energy part, and a slowly increas
high energy part. These two regimes are separated by a p
whereER is practically equal to the remaining kinetic ener
E02ER , which implies that at this point half of the tota
kinetic energyE0 is released by cracking. The two regim

FIG. 3. The energy released by beam breakingER and the ki-
netic energy stored in the motion of fragmentsE02ER . For com-
parison, the surface energyEs of the model, the binding energy o
the sampleEb , and the energy of the impactE0 are also indicated.
The energy unit is erg. For the exact values see Table I.

FIG. 4. The ratioeR of the energy released by breakingER and
the total kinetic energyEo . The transition point~fragmentation
threshold! between the damaged and fragmented states is ident
with the position of the maximum ofeR .
g
int

can be better observed in Fig. 4, where the ratioeR of ER and
E0 is plotted againsth. The curve ofeR has a maximum, the
value of which is in the vicinity of 0.5. This maximum sep
rates a rapidly increasing part and a slowly decreasing p
which we associate with the damaged and fragmented
gimes introduced above, respectively. We identify the tr
sition point between the two states with the position of t
maximum calledfragmentation thresholdhc .

The separation of the two regimes and the identificat
of the transition point is also supported by the behavior
the mass of the largest fragment as a function ofh. In Fig. 5
we present the sum of the mass of the largest fragment
the two bodiesMmax5Mmax

A 1Mmax
B , normalized by the total

massM tot5MA1MB versush. The monotonically decreas
ing function has a distinct curvature change, the position
which, hc50.36, coincides with the maximum of the energ
release curveeR . This also confirms that the behavior of th
system sharply changes at a specific value ofh that we call
the fragmentation thresholdhc .

To clarify the influence of the overall size of the collidin
bodies on the behavior of the fragmenting system, simu
tions were performed varying the radiusR of the particles
between 10 and 30 cm. Note that the average size of
randomly shaped unbreakable polygons is 1 cm. Figur
showseR as a function ofh for several values ofR. It can be
observed that the qualitative behavior of the curves is u
versal; it is independent of the system size, but the posi
of the transition pointhc is slightly shifted downward with
increasingR.

IV. SIZE DISTRIBUTION OF FRAGMENTS

To reveal the nature of the transition from the damag
state to the fragmented state, the evolution of the fragm
size distribution with varying impact energy is a cruci
point. Since the dissipated energyER is proportional to the
total surface of cracks, it is expected that the two regim
should clearly also show up in the type of disintegration

ed

FIG. 5. The mass of the largest fragments divided by the to
mass of the colliding system. The arrow indicates the fragmenta
thresholdhc .
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PRE 59 2627TRANSITION FROM DAMAGE TO FRAGMENTATION IN . . .
the solids, i.e., in the behavior of the size distribution
fragments. In the present section we demonstrate that, in
vicinity of hc the behavior of the fragment size distributio
shows strong similarities to that of the size distribution
clusters in systems undergoing a second order phase tr
tion. As an example, one can mention the behavior of
cluster size distribution in percolation around the critic
point pc , or the size distribution of droplets in the vicinity o
the critical temperatureTc in the case of the liquid-gas phas
transition. Throughout this section we refer to percolation
finite lattices for the purpose of comparison.

The fragment mass histogramsF(m;h) corresponding to
the colliding system of the preceding section are shown
Figs. 7~a! and 7~b! for several values ofh below and above
the transition pointhc . HereF(m;h) denotes the number o
fragments with massm divided by the total number of frag
ments, averaged over ten collision events having the samh.
In order to obtain the same statistics of the distribution at
sizes, a logarithmic binning was used, i.e., the binning
equidistant on logarithmic scale. The histograms have
cutoffs. The lower one is due to the existence of single
breakable polygons, while the upper one is determined
the finite size of the bodies.

In Fig. 2 we have shown that a collision ath just above
h0 results in only a few small fragments and two large on
~with almost the same size!, but no fragments are generate
in the intermediate mass region. Hence, in Fig. 7~a! the cor-
responding mass distributionF(m;h) has two peaks at sma
mass and large mass, with a large gap in between. Increa
h in Fig. 7~b!, the main difference compared to Fig. 7~a! is
that the peak of the large fragments gradually disappears
large pieces break into smaller ones, giving rise to fragme
in the intermediate mass region. Forh→hc the mass distri-
bution F(m;h) in the intermediate region tends to a pow
law:

F~m!;m2t. ~4!

The value of the exponent obtained ath5hc is t52.27
60.05. Our former simulations showed~see Ref.@13#! that

FIG. 6. The energy release curveeR at different system sizesR.
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the power law behavior ofF(m;h) remains valid forh
.hc , but the value of the exponentt is a decreasing func
tion of h, in agreement with most of the experimental obs
vations@4–7#.

To clarify the effect of the overall size of the collidin
bodiesR on the shape of the mass distributionF(m;h) and
on the value of the exponentt, in Fig. 8 we plot the frag-
ment size distributions at the transition pointhc for three
different values ofR. It can be seen that, upon increasingR,
the power law region ofF(m;hc) becomes wider and the
relative height of the hump at large fragments decreases
the value of the exponentt does not change. It is importan
to note that in the case of percolation on finite lattices
size distribution of clusters shows the same shape and de
dence on the system size at the critical point@30#.

More insight into the evolution of the shape ofF(m;h)
can be obtained by studying the moments of the distribut
as a function ofh. Thekth momentMk(h) of the histogram
F(m;h) is defined as

Mk~h!5(
m

mkF~m;h!. ~5!

FIG. 7. Mass distribution of fragments at different values ofh
below and above the fragmentation thresholdhc . The peak of small
fragments is due to the fact that single polygons are unbreakab
the model. The mass of the colliding disks with radiusR520 cm
was 1250 g.
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2628 PRE 59FERENC KUN AND HANS J. HERRMANN
In the case of critical phenomena like percolation or
liquid-gas transition, the momentsMk of the cluster size dis-
tribution with k.1 diverge at the critical point in the ther
modynamic limit

Mk;ueu2mk, ~6!

wheree denotes the distance from the critical point, i.e.e
5p2pc for percolation ore5T2Tc for the liquid-gas tran-
sition. In a finite system the momentsMk have a finite maxi-
mum at the transition point. Assuming gap scaling forF(m)
@30#,

F~m!;m2t f ~mse!, ~7!

the moment exponentsmk can be expressed in terms oft and
s,

mk5
11k2t

s
, ~8!

and the behavior of the system in the vicinity of the tran
tion point can be characterized by only two independent
ponentst ands.

To test whether our small systems exhibit some trace
this behavior, we evaluated so-calledsingle event moment
Mk

j defined as

Mk
j 5( 8

m
mknj~m!, ~9!

where the upper scriptj refers to thej th collision event,
nj (m) denotes the number of fragments with massm in
eventj, and the prime indicates that the sum runs over all
fragments excluding the largest ones of each of the two
liding bodies. The study of single event moments was fi
suggested by Campi and co-workers to reveal propertie
fragmentation processes with varying imparted energy@31–
33#. As demonstrated in Refs.@31–33#, the usage of single
event moments defined by Eq.~9! instead of Eq.~5! has the

FIG. 8. Mass distribution of fragments at the transition pointhc

for three different values of the system sizeR.
e

-
-

f

e
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t
of

advantage that part of the analysis, e.g., the study of
correlation of moments in scatter plots, can be carried
without ordering the collision events according to a para
eter like in our caseh. Following Campi and co-workers’s
ideas, we evaluated the ratio ofM2

j andM1
j

M2
j

M1
j

5
(m8 m2nj~m!

(m8 mnj~m!
5M̄ j , ~10!

which is equal to the average fragment sizeM̄ j in event j.
^M2

j /M1
j & is plotted in Fig. 9 for several different values o

the system sizeR as a function ofh. The bracketŝ •••&
denote that each data point was obtained as an average
ten events having the sameh. One can observe tha
^M2

j /M1
j & has a distinct maximum, the position of whic

coincides with the maximum of the energy release curveeR
in Fig. 6, within the precision of the calculations. It is ve
important to note that increasing the system sizeR the peak
of ^M2

j /M1
j & becomes sharper, i.e., the height of the pe

increases while the width of the peak decreases, whic
also typical for a critical point like the percolation thresho
occurring in finite size systems@30,31,34#.

The validity of gap scaling@Eq. ~7!# for the mass distri-
bution F(m;h) can be easily tested by making scatter plo
of momentsMk

j , i.e., by plotting Mk
j against Mk8

j with
k,k8.1, then checking the correlation of the moments a
the validity of the relation of the exponents@Eq. ~8!#. The
scatter plot of two pairs of moments is shown in Fig. 10. F
the purpose of normalization the moments withk.1 are
divided by M1

j . In Fig. 10 the collision events close to th
transition pointhc are represented by points with the large
values of the moments. Events withh far below or far above
hc result in smaller values ofMk

j ; hence the correspondin
points in Fig. 10 fall closer to the origin. One of the mo
remarkable features of Fig. 10 is that the moments
strongly correlated in the region corresponding to the vic
ity of the transition pointhc , and a power law seems to be

FIG. 9. ^M2
j /M1

j & as a function ofh for five different values of
R.
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PRE 59 2629TRANSITION FROM DAMAGE TO FRAGMENTATION IN . . .
reasonable fit to the scattered points. By this fitting pro
dure, one numerically obtains the ratio of the moment ex
nentsmk andmk8 since

Mk;M
k8

mk /mk8 , k,k8.1. ~11!

The value of the exponents obtained as the slope of
straight lines in Fig. 10 arem3 /m252.2860.1 andm5 /m2
54.9560.17, which are in agreement with the correspon
ing predictions 2.36 and 5.11, substitutingt52.27 into Eq.
~8!.

Hence we conclude that, within the limited precisio
available in our small system, the mass distribution of fra
ments fulfills the gap scaling relation@Eq. ~7!#, and the
damage-fragmentation transition occurs as a continu
phase transition. The control parameter of the transition
be identified with the parameterh, and the quantity charac
terizing the size reductionMmax/M tot can be considered a
the order parameter. To complete the characterization of
system aroundhc , we numerically determined the value o
the order parameter exponentb defined as@35#

Mmax

M tot
;uh2hcub, h,hc , ~12!

FIG. 10. Scatter plot of moments for the system of sizeR
520 cm. The straight lines were fitted to the data points in
rangeM2

j /M1
j .300.
-
-

e

-

-

us
n

ur

and the value of the exponentg characterizing the averag
fragment size:

K M2
j

M1
j L ;uh2hcu2g. ~13!

The power law behavior given by Eq.~13! is valid on both
sides of the critical pointhc . ~Note thatg5m2 .) Using the
data presented in Fig. 5, we plottedMmax/M tot versusuh
2hcu for h,hc in Fig. 11. It can be seen that a power la
with an exponentb50.1160.02 gives a reasonable fit to th
data. In Fig. 12,̂ M2

j /M1
j & belonging to the system sizeR

520 cm of Fig. 9 is depicted as a function ofuh2hcu for
h.hc . Again a power law with an exponentg50.26
60.02 can be fitted with a reasonable quality. Since only t
of the critical exponents are independent, we can check
consistency of our description by pairing the exponentst,b,
and g and using the well known scaling laws@30,35# of
critical phenomena to obtain the value of the other ex
nents. It can be observed in Table II that the numerical v
ues of the exponents obtained by starting from the three p
sible pairs agree well with each other within the error ba
which gives further justification of our phase transition p
ture.

V. DISCUSSION

In the present paper we applied our dynamical mode
granular solids to study impact fragmentation phenomen
low values of the imparted energy. Analyzing the energe
of the fragmentation process and the resulting size distr
tion of fragments, we identified two distinct final states of t
impact process, i.e.,damagedand fragmentedstates, with a
sharp transition in between. With a detailed study of t
behavior of the fragment mass distribution in the vicinity
the transition point and its dependence on the finite part
size we gave numerical evidence that the transition po

e

FIG. 11. Determination of the order parameter exponentb. The
data of Fig. 5 are plotted here as a function ofuh2hcu for h
,hc . The exponentb can be obtained as the slope of the lea
square fitted straight line.
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behaves as a critical point and that thedamage-
fragmentationtransition occurs as a continuous phase tran
tion. The control parameter of the transition was chosen to
the dimensionless ratioh of the energy of impact and th
binding energy of the sample, and the order parameter
associated with the mass of the largest fragment divided
the total mass.

Based on the time evolution of the collision process o
tained by the simulations, the following qualitative picture
the mechanism of the transition can be established: when
macroscopic solids collide, damage first occurs in the s
roundings of the contact zone of the bodies. After this c
tact damage a compressive elastic pulse expands rad
through the bodies, the amplitude of which strongly depe
on the amount of primary damage that occurred in the c
tact zone. The pulse reflects back from the free bound
and after reflection tensile forces arise in the solids, resul
in cracks in the bulk. The amount of breaking in the bulk
determined mainly by the amplitude of the initial pulse r

FIG. 12. To obtain the exponentg we plotted^M2
j /M1

j & belong-
ing to the system sizeR520 cm of Fig. 9 as a function ofuh
2hcu for h.hc . Data points are taken only from the vicinity o
hc . The exponentg is obtained as the slope of the least squ
fitted straight line.
i-
e

as
y

-
f

o
r-
-
lly
s
-

y,
g

-

maining after contact damage. The fragmentation of the c
liding solids occurs above a specific value of the impact
ergy where the amplitude of the remaining pulse will
sufficient to give rise to a complete breakup of the bulk in
pieces. At this specific energy value the behavior of the c
liding system sharply changes, as we demonstrated by
lyzing the energetics and the size distribution of fragmen

The idea of the existence of a so-called fragmentat
phase transition was first addressed in the field of nuc
physics, where the fragmentation of heavy nuclei due to
pact is extensively studied~for a recent review, see Re
@36#!. Using percolation based ideas it was shown that
disassembly of excited nuclei possesses a continuous p
transition when the imparted energy is varied@31–34#. The
order parameter of the transition was associated with the
~charge! of the largest fragment.

Recently, the penetration of a steel ball into a solid pl
with varying impact energy was studied experimentally@37#.
It was reported that the so-called ballistic limit, i.e., the im
pact energy where the perforation of the plate occurs,
haves as a critical point, and the perforation occurs a
continuous phase transition, the order parameter of wh
was chosen to be the mass of ejecta expelled from behind
target. It was argued that the mechanism of the phase tra
tion is the coalescence and percolation of randomly nu
ated microcracks.

In an analysis of the numerical results obtained by a co
puter simulation of our dynamical model, we referred to t
theory of percolation on finite lattices as an example of cr
cal phenomena occurring in finite systems, without assum
percolation of microcracks. In this sense our analysis is f
of model assumptions. In the snapshots of the final scena
of collision processes it can be seen that the complica
elastic field arising due to propagation and interference
elastic waves gives rise to correlated crack growth. Hence
our case, the assumption of percolation of cracks canno
valid, and the values of the exponents obtained numeric
are different from the corresponding exponents of perco
tion.

An important feature of our model which can affect th
result of a fragmentation process is the existence of elem
tary, nonbreakable polygons, which hinders us from obse
ing fragmentation on lower scales. In Ref.@15#, using a dis-
crete model of solids similar to ours, detailed tests of

e

f
TABLE II. Test of the consistency of the critical exponents. Starting from the three possible pairs ot,b,
andg, the value of the other exponents was derived using the scaling laws.

(t,b) (t,g) (b,g)

b 0.1160.02 g(t22)
32t

50.0960.025
0.1160.02

g (32t)b
t22

50.2960.08
0.2660.02 0.2660.02

s t22
b

52.4560.6
32t

g
52.860.28

1
g1b

52.760.21

t 2.2760.05 2.2760.05
21

b

g1b
52.360.04

a
22

(t21)b
t22

51.4860.12 22
(t21)g

32t
51.5460.06

22(2b1g)51.5260.045
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effect of the polygon size on the shape of the mass distr
tion of fragments in impact fragmentation were performed
was found that if the tessellation of a solid is fine enough
reproduce the macroscopic elastic behavior correctly, the
fect of the existence of unbreakable polygons on the s
distribution of fragments occurs solely in the vicinity of th
cutoff size, and the overall shape of the distribution is n
affected. This also implies that the phase transition beha
revealed by our simulations is not influenced globally by
element size, but it can be expected that the critical reg
becomes narrower when the element size decreases at a
value of the macroscopic size of the colliding bodies.

Studying kinetic models of fragmentation phenomena
Refs. @23,38# it was pointed out that under certain circum
stances a so-called shattering transition might occur, wh
macroscopic amount of mass of the fragmenting system
transformed into a dusty phase, i.e., into single polygons
our case. Since in discrete dynamical models such a sha
ing transition can occur only at very high impact energies,
investigation is not included in the present study.

The binary breakup of bond percolation clusters due
the removal of a single bond has also been studied in
context of fragmentation phenomena. The characteri
quantities describing the fragmentation of percolation cl
ters are the number of fragmenting bondsas(p), i.e., the
number of those bonds in the cluster of sizes whose removal
results in two disconnected clusters, and the probab
Ps8,s(p) that the breakup of a cluster of sizes results in a
daughter cluster of sizes8 @39#. as(p) and Ps8,s(p) are of
i,

c

es

h

J.

J.
u-
t
o
f-
e

t
or
e
e

xed

n

a
is
in
er-
s

o
e

ic
-

y

fundamental interest because they describe the connect
of percolation clusters, and they may also serve as inputs
the rate equations describing fragmentation processes
sequence of binary events@23,38,39#. At the critical point
p5pc , both as(pc) and Ps8,s(pc) show interesting scaling
behaviors whose scaling exponents could be related to
critical exponents of percolation@39#, but no phase transition
was claimed in the breakup process. Although the form
Ps8,s(pc) as a function of the daughter masss8 and its de-
pendence on the global size of the fragmenting objects @39#
is similar to some extent to the behavior of our fragme
mass distribution at the critical pointF(m;hc) ~see Fig. 8!,
there is no direct analogy between the binary breakup
percolation clusters and our dynamic fragmentation proc

To our knowledge, no systematic experimental study
the transition from damage to fragmentation in impact
solids has been performed, so that we cannot confront
results of the simulations with experiments. For a dee
understanding of the transition predicted by our simulatio
further experimental and more analytical theoretical stud
are needed.
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