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Transition from damage to fragmentation in collision of solids
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We investigate fracture and fragmentation of solids due to impact at low energies using a two-dimensional
dynamical model of granular solids. Simulating collisions of two solid disks, we show that, depending on the
initial energy, the outcome of a collision process can be classified into two states: a damaged state and a
fragmented state, with a sharp transition in between. We give numerical evidence that the transition point
between the two states behaves as a critical point, and we discuss the possible mechanism of the transition.
[S1063-651X99)15302-9

PACS numbd(s): 64.60.Ak, 46.50+a

[. INTRODUCTION loss in the flow. Collision of particles also occurs in the solar
system in planetary rings. In this case the energy dissipation
Fragmentation, i.e., the breaking of particulate materialglue to impact damage might also influence the large scale
into smaller pieces, is a ubiquitous process that underliestructure formation in the ring26]. On a larger length scale
many natural phenomena and industrial processes. THE the solar system, the so-called collisional evolution of as-
length scales involved in it range from the collisional evolu-teroids due to subsequent collisions, and the formation of
tion of asteroids through the scale of geological phenomengHbble piles in the asteroid belt, are still challenging prob-
down to the breakup of heavy nuclgd,2]. In most of the lems[6]. Among industrial applications the breakup of ag-
realizations of fragmentation processes the energy is imglomerates in chemical processes can be mentioned. Due to
parted to the system by impact; i.e., typica| experimentaBXperimenta| difficulties, the computer simulation of micro-
situations are shooting a projectile into a solid block, free fallscopic models is an indispensable tool in the study of these
impact with a massive plate, and collision of particles of theimpact phenomenpl2—-17.
same siz¢3—11]. The most striking observation about frag-  In the present paper we want to elaborate upon the impact
mentation is that the size distribution of fragments shows dracture and fragmentation of solids at low imparted energy
power law behavior independent of the microscopic interacusing a two-dimensional dynamical model of breakable
tions and the relevant length scales; e.g., the charge distrib@anular solids. Simulating collisions of two solid disks, we
tion of small nuclei resulted from collisions of heavy ions show that, depending on the imparted energy, the outcome of
exhibits the same power law behavior as the size distributiog collision process can be classified into two states: a dam-
of asteroid§1—11]. Experiments revealed that the power law 2ged state and a fragmented state, with a sharp transition in
behavior of fragment sizes is valid for a broad interval of thebetween. Analyzing the energetics of the impact and the re-
imparted energy3—11], which was also reproduced by com- sulting fragment size distributions, we give numerical evi-
puter simulation of sophisticated microscopic moddlg—  dence that the transition point between the damaged and
17]. The observation of power law size distributions without fragmented states behaves as a critical point. The transition
a control parameter initiated the idea of self-organized critifroved to be the lower bound for the occurrence of power
cality [8—11,18,19in fragmentation, and gave rise to numer- law size distributions. The possible mechanism of the transi-
ous studies to understand the dynamic origin of the powetion between the two states is discussed. In spite of the spe-
law [12—25. Hence during the past years much informationcific features of the system studied here, most of our results
has been accumulated about fragmentation processes in th@n be considered generally valid for impact phenomena
imparted energy range where a power law size distributioinentioned above.
occurs, but the limiting case of low energies is still not ex- After giving a short summary of the main ingredients of
plored. our model in Sec. Il, the numerical results concerning to the
In addition to the general interest in fragmentation pro-energetics of the collision process and to the size distribution
cesses, one can also mention other fields where fracture afdl fragments will be presented in Secs. Ill and 1V, respec-
fragmentation of solid particles due to impact play an impor-tively. In Sec. V, we discuss the possible mechanism of the
tant role. It is well known that in the flow of granular mate- transition and some general consequences of our work for
rials a large part of the kinetic energy of the grains is dissi-Other types of fragmentation phenomena.
pated in the vicinity of their contact zone during the
collisions. In addition to the viscous and plastic effects, dis- Il. MODEL
sipation by damaging is also an important source of energy '
Recently, we have worked out a two-dimensional dynami-
cal model of deformable, breakable, granular solids, which
*Electronic address: feri@ical.uni-stuttgart.de enables us to perform a molecular dynamics simulation of

1063-651X/99/568)/262310)/$15.00 PRE 59 2623 ©1999 The American Physical Society



2624 FERENC KUN AND HANS J. HERRMANN PRE 59

fracture and fragmentation of solids in various experimental
situationg 12,13. Our model is an extension of those models
which are used to study the behavior of granular materials,
applying randomly shaped convex polygons to describe Ry
grains[27]. To capture the elastic behavior of solids we con- b

nect the unbreakable, undeformable, polygdgsaing by

elastic beams. The beams, modeling cohesive forces between Vo
grains, can be broken according to a physical breaking rule, R
which takes into account the stretching and bending of the
connections. The breaking rule contains two parameters

andtg controlling the relative importance of the stretching

and bending breaking modes, respectively. The energy stored FIG. 1. The schematic representation of the collision of two
in a beam just before breaking is released in the breakagéisks. In all the simulation®,=Rg was used, and the value bf
giving rise to energy dissipation. The average value of thavas set to 0.

energy dissipated by the breakup of one contact defines the

crack surface energl, in the model solid as a function of the collision of two particles is depicted in Fig. 1. For sim-
the breaking parametetts andte . At the broken beams Plicity, in the present studies only central collisions were
along the surface of the polygons, cracks are generated insig@nsidered; i.e., the value of the impact parambteras set

the solid, and as a result of the successive beam breaking tk@ zero in all the simulations, and only the size of the par-
solid falls apart. The fragments are defined as sets of polyticles R and the surface enerdy; were varied. In the simu-
gons connected by remaining intact beams. In the frameworldtions the energy release by beam breaking is the only pos-
of this discrete model one can introduce the notion of thesible source of dissipation. The energy of the collisignis
binding energyE, as the energy released in the case of Comdefined as the total initial kinetic energy of the colliding
plete disintegration, i.e., in the case when all the fragment§odies,
are single polygons. Hence,

Vo

Eo=R?mpug, 2)
Ep=N.Es, 1
wherep is the mass density and, denotes the initial veloc-
whereN, denotes the total number of grain-grain contacts inity of the particles. Wherkg, is smaller than the so-called
the solid. Note thak, is proportional to the volume of the damage thresholé,, the collision results simply in elastic
sample, and can be considered as a natural energy scalerebound without internal damagéwithout breaking of
the system. beam$. To achieve damagingg, has to surpass the damage
The time evolution of the fragmenting solid is obtained by thresholdE,, which is determined by the surface eneffy
solving the equations of motion of the individual polygons of the model.
until the entire system relaxes, i.e., there is no breaking of |t is generally accepted that impact fragmentation phe-
the beams during some hundreds of consecutive time stepgomena exhibit so-called energy scaling, i.e., the result of the
and there is no energy stored in deformation. For more defragmentation process only depends on the value of the spe-
tails of the model's definition, see Refd2,13. cific energy defined as the imparted energy divided by the
We have applied the model to study shock fragmentationotal mass of the system. To characterize the collision events,

of solids in various experimental situations. That is, simulawe introduce a dimensionless parameﬁeﬂith the definition
tions were performed to study the fragmentation of a solid

disk caused by an explosion in the midflle?], the breaking Eo vo
of a rectangular block due to the impact with a projectile 7=\Ng =~ = ©)
[12], and the collision of two macroscopic bodigdisks b \/E—s

[13]. The model proved to be successful in reproducing the

experimentally observed subtleties of fragmenting systems| NiS choice of parametey has the advantage with respect to
he specific energy that, besides the dependence on the glo-

e.g., the power law mass distribution of fragments was foun P ) o ,
al size, it also includes the specific material type through

to be independent of the initial conditions, with an exponen ; :
the surface energi.. Since in the present study we focus

in the vicinity of two, slightly depending on the initial energy X o L
[12,13. on the evolution of damage with increasing impact energy,

simulations were performed at fixed valuesRondE, vary-
ing 7 in the rangen,< 7<<1.5. Herex, corresponds to the
damage thresholdyy= VE4/E,. Our results concerning im-

In the present paper we apply our model to explore thepact fragmentation ay>1.5 can be found in Ref13], in-
properties of impact fragmentation processes at low impartedluding a detailed analysis of the dynamics of the collision
energy. For this purpose we carried out molecular dynamicprocess and a comparison to experiments. The values of the
simulation of the collision of two solid disks of the same most important parameters of the present simulations are
size, similar to Ref[13]. The disk-shaped granular solid was summarized in Table I.
obtained starting from the Voronoi tessellation of a square In Fig. 2 we present the final breaking scenafiedaxed
[28,29, and cutting out a circular window in the middle. state$ of the collision process obtained by simulations at
This way of construction gives rise to a certain surfacefour different values ofy. It can be observed that fop
roughness of the particles. The schematic representation of 5, [Fig. 2@)], cracking by beam breaking occurs mainly

IIl. DAMAGE AND FRAGMENTATION
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TABLE I. The parameter values used in the simulations.

Parameter Symbol Unit Value

Failure elongation of a beam t, % 3
Failure bending of a beam te degree 4
Surface energy Eg erg 1.4x10°
Damage threshold Eq erg 1.7 10°
Mo 1 0.08
Range of velocities Vo cm/s  200-3500

(a)

in the vicinity of the contact surface of the two bodies, and
the bulk remains practically intact. Since this gentle collision
does not cause size reduction of the two particles, this case
can be considered as an inelastic impact of disks, where en:
ergy dissipation is solely due to internal damage. Increasing
the impact energ¥,, i.e., increasingy, gives rise to more
broken beams in Fig.(B), and the solids break into pieces.
Around the impact site of the bodies the fragments are
smaller (single polygons, and some pairs and triplend
there are a few much larger fragments the size of which is
still comparable to the original size of the bodies. Further
increase ofx [Figs. 2c) and Zd)] mainly results in a
breakup of the large fragments into smaller ones, giving rise
to fragmentation of the entire solids. Based on the above §
qualitative picture, we classify the outcome of a collision
into two states, i.e.damagedand fragmentedstates, distin-
guished by the size of the largest remaining piece. The col-
liding bodies are considered to bamagedvhen the size of
the largest piece is comparable to the original size of the
bodiegsee Figs. &) and 2b)], while thefragmentedstate is
characterized by the absence of such large piféigs. 4c)

and 2d)]. In the following we point out that the above quali-
tative picture is also supported by a quantitative analysis of
the energetics of the collision process and of the behavior of
the resulting size distribution of fragments. That is, evaluat-
ing the energy released by the breaking of beams, and quan
tities related to the size distribution of fragments, we will
justify that the behavior of the colliding system has two dif-
ferent regimes with a sharp transition in between.

The energetics of the collision process corresponding to
the samples of Fig. 2 is summarized in Figs. 3 and 4. Figure
3 shows the energky released by beam breaking, together
with the remaining kinetic energif,— Eg stored in the mo-
tion of fragments as a function of. For the purpose of
comparison, the surface energy of the model, the binding
energy of the sampl&,, and the energy of the impaf,
are also plotted in the figure. When the impact eneggy
surpasses the damage threshBld (» surpassesy), the
released energii takes its smallest value, which is equal to o @
the surface energi of the model(only one beam is bro- © o
ken). The largest possible value Bf; is equal to the binding
energy of the sampl&y,, which can only be reached in the FIG. 2. The final breaking scenarios of collisions of disks at
case of complete disintegration. According to the simuladifferent impact energiesE,. The radius of the disks iR
tions, this limiting case is hard to achieve, since on the sur=20 cm, while the average size of a randomly shaped polygon is 1
face of the colliding disks opposite to the impact site, smallcm. The lines connecting the center of mass of the neighboring
fragments comprising a few polygons can always escape. folygons symbolize beams. The missing beams have already been
can also be seen in the figure that the impact endétgy broken. The values of the parametgare 0.09, 0.2, 0.3, and 0.5 for
producing complete disintegration has to be much larger thaf®, (b), (c), and(d), respectively.




2626 FERENC KUN AND HANS J. HERRMANN PRE 59

n FIG. 5. The mass of the largest fragments divided by the total
mass of the colliding system. The arrow indicates the fragmentation

FIG. 3. The energy released by beam brealéigand the ki- threshold, .

netic energy stored in the motion of fragmelg— Er. For com-
parison, the surface ener@y of the model, the binding energy of
the sampleE,,, and the energy of the impaEt, are also indicated.
The energy unit is erg. For the exact values see Table I.

can be better observed in Fig. 4, where the ratiof Eg and

E, is plotted against). The curve ofeg has a maximum, the
value of which is in the vicinity of 0.5. This maximum sepa-
o o o rates a rapidly increasing part and a slowly decreasing part,
the binding energ§y, . Note that a similar qualitative behav- \yhich we associate with the damaged and fragmented re-
ior was found, simulating the free fall impact of a disk with gimes introduced above, respectively. We identify the tran-

a massive platg16]. . . _ sition point between the two states with the position of the
The most interesting observation of Fig. 3 is that themaximum calledragmentation thresholdy .
curve of Eg versusy is composed of two distinct parts; i.e.,  The separation of the two regimes and the identification

a rapidly increasing low energy part, and a slowly increasingy the transition point is also supported by the behavior of
high energy part. These two regimes are separated by a pOife mass of the largest fragment as a functiomof Fig. 5
whereEg is practically equal to the remaining kinetic energy e present the sum of the mass of the largest fragments of

Eo—Egr, Which implies that at this point half of the total ine two bodiesvi max:Mf\nax_*—MB normalized by the total

. . . . . max?
kinetic energyE, is released by cracking. The two regimes massM .= MA+ M? versusy. The monotonically decreas-

ing function has a distinct curvature change, the position of

06— T T T 1T which, ».=0.36, coincides with the maximum of the energy
d . release curveg. This also confirms that the behavior of the
amage fragmentation \p
05 | - . system sharply changes at a specific value;dhat we call
' the fragmentation thresholgl .
o To clarify the influence of the overall size of the colliding
04 - 2 g‘?mplete T ] bodies on the behavior of the fragmenting system, simula-
° w isintegration i . . .
= = £ tions were performed varying the radii&sof the particles
& E = between 10 and 30 cm. Note that the average size of the
EH o03r-% g . ;
I £ £ randomly shaped unbreakable polygons is 1 cm. Figure 6
& ‘éb g showseg as a function ofy for several values dR. It can be
02 ¢ g observed that the qualitative behavior of the curves is uni-
= & versal; it is independent of the system size, but the position
of the transition pointy, is slightly shifted downward with
0.1r l ‘ increasingR.
0.0 L —L : : IV. SIZE DISTRIBUTION OF FRAGMENTS
00 02 04 06 08 10 12 14

n To reveal the nature of the transition from the damaged
state to the fragmented state, the evolution of the fragment
FIG. 4. The ratioeg of the energy released by breakifg and ~ Size distribution with varying impact energy is a crucial
the total kinetic energyE,. The transition point(fragmentation  point. Since the dissipated energy is proportional to the
threshold between the damaged and fragmented states is identifiettal surface of cracks, it is expected that the two regimes
with the position of the maximum of . should clearly also show up in the type of disintegration of
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FIG. 6. The energy release cureg at different system sizeR.

the solids, i.e., in the behavior of the size distribution of _
fragments. In the present section we demonstrate that, in th &
vicinity of 7. the behavior of the fragment size distribution g
shows strong similarities to that of the size distribution of ~
clusters in systems undergoing a second order phase trans
tion. As an example, one can mention the behavior of the
cluster size distribution in percolation around the critical
pointp., or the size distribution of droplets in the vicinity of
the critical temperatur&.. in the case of the liquid-gas phase
transition. Throughout this section we refer to percolation on
finite lattices for the purpose of comparison.

The fragment mass histograrR$¢m; ) corresponding to
the colliding system of the preceding section are shown in m [g]
Figs. 1a) and 1b) for several values ofy below and above FIG. 7. Mass distribution of fragments at different valuesyof
the transition point. . HereF(m; 7) denotes the number of pelow and above the fragmentation threshgid The peak of small
fragments with masm divided by the total number of frag-  fragments is due to the fact that single polygons are unbreakable in
ments, averaged over ten collision events having the Sgme the model. The mass of the colliding disks with radRis 20 cm
In order to obtain the same statistics of the distribution at allvas 1250 g.
sizes, a logarithmic binning was used, i.e., the binning is ) ] ]
equidistant on logarithmic scale. The histograms have twdh€ Power law behavior of(m;7) remains valid fory
cutoffs. The lower one is due to the existence of single un=" 77c. but the value of the exponentis a decreasing func-
breakable polygons, while the upper one is determined b{o" of 5, in agreement with most of the experimental obser-

L : ations[4—7].
thelr?r::l;[S SZIZ\?V:L?VeebS%%\?VSH that a collision atjust above To clarify the effect of the overall size of the colliding

. bodiesR on the shape of the mass distributiBm; ) and
70 results in only a few small fragments and two large ones

' . on the value of the exponent in Fig. 8 we plot the frag-
'(Wlttf:] a_lr?ost tr('f tsame sﬁz,ebu_t noljragmeptngreY%enerated ment size distributions at the transition point for three
In the Intermediate mass region. Hence, n i@) The cor- different values oR. It can be seen that, upon increasiRg
responding mass distributidf(m; ) has two peaks at small

mass and large mass, with a large gap in between Increasir;tllée power law region of (m; ;) becomes wider and the
- o o lative height of the hump at large fragments decreases, but
7 in Fig. 7(b), the main difference compared to Figayis v '9 ump g g !

: _.the value of the exponentdoes not change. It is important
that the peak of the large fragments gradually disappears; tr{% note that in the case of percolation on finite lattices the

!arge p_ieces brgak into smallgr ones, giving rise 1o fr"?‘gmen@ize distribution of clusters shows the same shape and depen-
in the intermediate mass region. Fg 7. the mass distri- dence on the system size at the critical pdB].

bution F(m; %) in the intermediate region tends to a power More insight into the evolution of the shape Btm: 7)

law: can be obtained by studying the moments of the distribution
_, as a function ofy. Thekth momentM (#) of the histogram
F(m)~m™". 4 F(m;7) is defined as
The value of the exponent obtained at 7. is 7=2.27 M = m*E(m: 5
+0.05. Our former simulations showédgee Ref[13]) that K7) % (M 7). ©
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FIG. 9. (M/M}) as a function ofy for five different values of
FIG. 8. Mass distribution of fragments at the transition pajpt R

for three different values of the system sRe

In the case of critical phenomena like percolation or theadvantage that part of the analysis, e.g., the study of the

liquid-gas transition, the momenid, of the cluster size dis- correlation of moments in scatter plots, can be carried out

tribution with k>1 diverge at the critical point in the ther- g;??;ﬂ;fiﬂ?gc;ge coFIIcljrillgvr\\Iiﬁveg;sma(i:c;r:glr;%_tlt\)m?kz?srim-
modynamic limit 7. g pr

ideas, we evaluated the ratio bf, and M}
Mk~|6|7'ukl (6)
ML, =/ m?ni(m)
ML 2/ mni(m)

where e denotes the distance from the critical point, ie.,
=p—p. for percolation ore=T—T, for the liquid-gas tran-
sition. In a finite system the momerii, have a finite maxi-
mum at the transition point. Assuming gap scaling Fgm)
[30],

=M, (10)

which is equal to the average fragment sMé in event;j.
(ML/M’) is plotted in Fig. 9 for several different values of
the system sizék as a function ofz. The brackets- - -)
denote that each data point was obtained as an average over
ten events having the samg. One can observe that
(M4/MY) has a distinct maximum, the position of which

14ke 7 coincides with the maximum of the energy release cuye
U= —— (8)  in Fig. 6, within the precision of the calculations. It is very

o important to note that increasing the system fzihe peak
Y ‘ .
and the behavior of the system in the vicinity of the transi-ic;]fcﬁ(';f;s/e'\g 1\>N:i?ecc,:2; e\SNiZTg rg?:’h;e"eg]ke df:g?eh;sgfs thvihﬁ:iali(s
tion point can be characterized by only two independent ex- X ” orhe p . '
ponentsr and . also typlca_tl fqr_a cr!t|cal point like the percolation threshold
To test whether our small systems exhibit some trace ofceurmng in finite size systen$0,31,34.

this behavior, we evaluated so-callsihgle event moments The val@ty of gap Scal_lnqu. (7] for th? mass distri-
ML defined as bution F(m; 7) can be easily tested by making scatter plots

of momentsM|, i.e., by plotting M} againstM!, with
k,k’>1, then checking the correlation of the moments and
the validity of the relation of the exponenigq. (8)]. The
scatter plot of two pairs of moments is shown in Fig. 10. For
where the upper script refers to thejth collision event, the purpose of normalization the moments wihk1 are
ni(m) denotes the number of fragments with massin divided by M. In Fig. 10 the collision events close to the
eventj, and the prime indicates that the sum runs over all thdransition pointzy are represented by points with the largest
fragments excluding the largest ones of each of the two colvalues of the moments. Events withfar below or far above
liding bodies. The study of single event moments was firsty. result in smaller values d¥1}; hence the corresponding
suggested by Campi and co-workers to reveal properties gfoints in Fig. 10 fall closer to the origin. One of the most
fragmentation processes with varying imparted en¢B8fy- remarkable features of Fig. 10 is that the moments are
33]. As demonstrated in Ref§31-33, the usage of single strongly correlated in the region corresponding to the vicin-
event moments defined by E@) instead of Eq(5) has the ity of the transition pointy., and a power law seems to be a

F(m)~m~"f(m%), (7)

the moment exponenjs, can be expressed in terms-oénd
0-1

Mi=2;" m*ni(m), )
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FIG. 11. Determination of the order parameter exporgnthe
data of Fig. 5 are plotted here as a function |gf— 5. for 7
<7.. The exponeni3 can be obtained as the slope of the least
square fitted straight line.
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£ 3 and the value of the exponent characterizing the average
0'F o k fragment size:
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The power law behavior given by E@LJ) is valid on both
FIG. 10. Scatter plot of moments for the system of sike sides of the critical point.. (Note thaty=u,.) Using the
=20 cm. The straight lines were fitted to the data points in thedata presented in Fig. 5, we plottéd,,,,/M versus|y
rangeM5/M}>300. — 7| for <. in Fig. 11. It can be seen that a power law
with an exponenB=0.11+0.02 gives a reasonable fit to the

reasonable fit to the scattered points. By this fitting procedata. In Fig. 12(M4/M}) belonging to the system sizZe

dure, one numerically obtains the ratio of the moment expo=20 cm of Fig. 9 is depicted as a function of— 7| for

nentsw, and u since n>7.. Again a power law with an exponeny=0.26

+0.02 can be fitted with a reasonable quality. Since only two

of the critical exponents are independent, we can check the

consistency of our description by pairing the exponen

and y and using the well known scaling law80,35 of

The value of the exponents obtained as the slope of theritical phenomena to obtain the value of the other expo-

straight lines in Fig. 10 ar@u3/u,=2.28+0.1 andus/us nents. It can be observed in Table Il that the numerical val-

=4.95+0.17, which are in agreement with the correspond-ues of the exponents obtained by starting from the three pos-

ing predictions 2.36 and 5.11, substituting2.27 into Eq.  sible pairs agree well with each other within the error bars,

(8). which gives further justification of our phase transition pic-
Hence we conclude that, within the limited precision ture.

available in our small system, the mass distribution of frag-

ments fulfills the gap scaling relatiofEqg. (7)], and the V. DISCUSSION

damage-fragmentation transition occurs as a continuous

phase transition. The control parameter of the transition can N the present paper we applied our dynamical model of

be identified with the parametey, and the quantity charac- granular solids to study impact fragmentation phenomena at

terizing the size reductioM ,,/M can be considered as low values of the imparted energy. Analyzing the energetics

the order parameter. To complete the characterization of o the fragmentation process and the resulting size distribu-

system aroundy,, we numerically determined the value of tion of fragments, we identified two distinct final states of the

the order parameter exponegitdefined ag35] impact process, i.edamagedand fragmentedstates, with a
sharp transition in between. With a detailed study of the

behavior of the fragment mass distribution in the vicinity of
(12) the transition point and its dependence on the finite particle
size we gave numerical evidence that the transition point

My~ MEE k> 1, (12)

M
Mmax~ 7= ncl?,  n<ne,
tot
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T ' maining after contact damage. The fragmentation of the col-
liding solids occurs above a specific value of the impact en-
ergy where the amplitude of the remaining pulse will be
ok a i sufficient to give rise to a complete breakup of the bulk into
[ i pieces. At this specific energy value the behavior of the col-
liding system sharply changes, as we demonstrated by ana-
lyzing the energetics and the size distribution of fragments.
The idea of the existence of a so-called fragmentation
phase transition was first addressed in the field of nuclear
physics, where the fragmentation of heavy nuclei due to im-
pact is extensively studiedfor a recent review, see Ref.
[36]). Using percolation based ideas it was shown that the
disassembly of excited nuclei possesses a continuous phase
transition when the imparted energy is vari{@l—34. The
order parameter of the transition was associated with the size
10 : SR : (charge of the largest fragment.
Recently, the penetration of a steel ball into a solid plate
| 71, | with varying impact energy was studied experimentf#y].
¢ It was reported that the so-called ballistic limit, i.e., the im-
FIG. 12. To obtain the exponentwe plotted(M/M1) belong- ~ Pact energy where the perforation of the plate occurs, be-
ing to the system siz&=20 cm of Fig. 9 as a function ofy haves as a critical point, and the perforation occurs as a
— 7¢ for 7> 7, . Data points are taken only from the vicinity of continuous phase transition, the order parameter of which
n.. The exponenty is obtained as the slope of the least squarewas chosen to be the mass of ejecta expelled from behind the
fitted straight line. target. It was argued that the mechanism of the phase transi-
tion is the coalescence and percolation of randomly nucle-
behaves as a critical point and that thdamage- ated microcracks.
fragmentatiortransition occurs as a continuous phase transi- In an analysis of the numerical results obtained by a com-
tion. The control parameter of the transition was chosen to bputer simulation of our dynamical model, we referred to the
the dimensionless ratig of the energy of impact and the theory of percolation on finite lattices as an example of criti-
binding energy of the sample, and the order parameter wasal phenomena occurring in finite systems, without assuming
associated with the mass of the largest fragment divided bpercolation of microcracks. In this sense our analysis is free
the total mass. of model assumptions. In the snapshots of the final scenarios
Based on the time evolution of the collision process ob-of collision processes it can be seen that the complicated
tained by the simulations, the following qualitative picture of elastic field arising due to propagation and interference of
the mechanism of the transition can be established: when twelastic waves gives rise to correlated crack growth. Hence, in
macroscopic solids collide, damage first occurs in the sureur case, the assumption of percolation of cracks cannot be
roundings of the contact zone of the bodies. After this convalid, and the values of the exponents obtained numerically
tact damage a compressive elastic pulse expands radialre different from the corresponding exponents of percola-
through the bodies, the amplitude of which strongly dependsion.
on the amount of primary damage that occurred in the con- An important feature of our model which can affect the
tact zone. The pulse reflects back from the free boundaryesult of a fragmentation process is the existence of elemen-
and after reflection tensile forces arise in the solids, resultingary, nonbreakable polygons, which hinders us from observ-
in cracks in the bulk. The amount of breaking in the bulk ising fragmentation on lower scales. In REE5], using a dis-
determined mainly by the amplitude of the initial pulse re-crete model of solids similar to ours, detailed tests of the

—

<M2j/M lj

TABLE Il. Test of the consistency of the critical exponents. Starting from the three possible paji3, of
and v, the value of the other exponents was derived using the scaling laws.

(r.8) (7.7) (B.7)
8 0.11+0.02 (r—2) 0.11+0.02
=0.09+0.025
3—71
3— 0.26+0.02 0.26-0.02
Y G184 29-0.08
T—2
7 T2 45406 37 ,8:0028 1 o701
5 =2.4520. - =2820, =270,
. 2.27+0.05 2.27-0.05 B
24— —23+0.04
y+8
1 1 2 (2B+v)=1.52+0.045
“ 2—(77_2)B=1.48to.12 2—(73_ )Y _ 1 54006 (25+7)
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effect of the polygon size on the shape of the mass distribufundamental interest because they describe the connectivity
tion of fragments in impact fragmentation were performed. Itof percolation clusters, and they may also serve as inputs for
was found that if the tessellation of a solid is fine enough tahe rate equations describing fragmentation processes as a
reproduce the macroscopic elastic behavior correctly, the eequence of binary evenf23,38,39. At the critical point
fect of the existence of unbreakable polygons on the siz@=p., bothag(p;) and Py ((p.) show interesting scaling
distribution of fragments occurs solely in the vicinity of the behaviors whose scaling exponents could be related to the
cutoff size, and the overall shape of the distribution is notcritical exponents of percolatidi39], but no phase transition
affected. This also implies that the phase transition behaviowas claimed in the breakup process. Although the form of
revealed by our simulations is not influenced globally by theP, ((p.) as a function of the daughter massand its de-
element size, but it can be expected that the critical regim@endence on the global size of the fragmenting olgé89]
becomes narrower when the element size decreases at a fixigdsimilar to some extent to the behavior of our fragment
value of the macroscopic size of the colliding bodies. mass distribution at the critical poift(m; 7.) (see Fig. 8,
Studying kinetic models of fragmentation phenomena inthere is no direct analogy between the binary breakup of
Refs.[23,3§ it was pointed out that under certain circum- percolation clusters and our dynamic fragmentation process.
stances a so-called shattering transition might occur, when a To our knowledge, no systematic experimental study of
macroscopic amount of mass of the fragmenting system ithe transition from damage to fragmentation in impact of
transformed into a dusty phase, i.e., into single polygons irsolids has been performed, so that we cannot confront the
our case. Since in discrete dynamical models such a shatteresults of the simulations with experiments. For a deeper
ing transition can occur only at very high impact energies, itaunderstanding of the transition predicted by our simulations,
investigation is not included in the present study. further experimental and more analytical theoretical studies
The binary breakup of bond percolation clusters due taare needed.
the removal of a single bond has also been studied in the
context of fragmentation phenomena. The characteristic
guantities describing the fragmentation of percolation clus-
ters are the number of fragmenting boragp), i.e., the F.K. is very grateful to R. Englman, Z.'dar, and K. F.
number of those bonds in the cluster of siaghose removal P4 for valuable discussions and for sending him reprints of
results in two disconnected clusters, and the probabilittheir works on fragmentation. F.K. acknowledges financial
Ps «(p) that the breakup of a cluster of sizeresults in a  support of the Alexander von Humboldt Foundation, and that
daughter cluster of size’ [39]. ag(p) and Py s(p) are of  of the Project Nos. SFB381 and OTKA T-023844.
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